< Prev(J) / Next(K) > / View :

Filename: /text/sbasic/shared/03060200.xhp

(section: eqv) (bookmark: bm_id3156344)
Eqv operator (logical)

Eqv 論理演算子

Eqv Operator [Runtime]
Eqv 演算子 [実行時](hd_id3156344.1)

Calculates the logical equivalence of two expressions.
2 つの表式間の論理等価演算を行います。(par_id3149656.2)

(/section: eqv)

Syntax:
構文:(hd_id3154367.3)

Result = Expression1 Eqv Expression2
Result = Expression1 Eqv Expression2(par_id3154910.4)

Parameters:
パラメータ:(hd_id3151043.5)

Result: Any numeric variable that contains the result of the comparison.
Result: 演算結果を格納する数値変数。(par_id3150869.6)

Expression1, Expression2: Any expressions that you want to compare.
Expression1, Expression2: 論理等価を行う式。(par_id3150448.7)

When testing for equivalence between Boolean expressions, the result is True if both expressions are either True or False.
ブール型の表式に対して論理等価の判定をする場合、2 つの表式がともに True であるか、あるいはともに False である場合に、結果が True となります。(par_id3149562.8)

In a bit-wise comparison, the Eqv operator only sets the corresponding bit in the result if a bit is set in both expressions, or in neither expression.
ビット型の表式に対して Eqv 演算子による論理等価の比較を行う場合、両者の表式で対応するビットがともに 1 であるか、あるいはともに 0 である場合に、演算結果のビットが 1 となります。(par_id3154319.9)

Example:
例:(hd_id3159154.10)

Sub ExampleEqv
Sub ExampleEqv(par_id3147426.11)

Dim A as Variant, B as Variant, C as Variant, D as Variant
Dim A as Variant, B as Variant, C as Variant, D as Variant(par_id3155308.12)

Dim vOut as Variant
Dim vOut as Variant(par_id3146986.13)

A = 10: B = 8: C = 6: D = Null
A = 10: B = 8: C = 6: D = Null(par_id3147434.14)

vOut = A > B Eqv B > C REM returns -1
vOut = A > B Eqv B > C REM 戻り値は -1(par_id3152462.15)

vOut = B > A Eqv B > C REM returns 0
vOut = B > A Eqv B > C REM returns 0(par_id3153191.16)

vOut = A > B Eqv B > D REM returns 0
vOut = A > B Eqv B > D REM returns 0(par_id3145799.17)

vOut = (B > D Eqv B > A) REM returns -1
vOut = (B > D Eqv B > A) REM returns -1(par_id3149412.18)

vOut = B Eqv A REM returns -3
vOut = B Eqv A REM returns -3(par_id3149959.19)

End Sub
End Sub(par_id3145646.20)


< Prev / Next >